
Cisco > Inside Cisco IOS Software Architecture > 1. Fundamental IOS Software Architecture > Memory
Organization

See All Titles

Memory Organization

IOS maps the entire physical memory into one large flat virtual address space. The CPU's MMU is used
when available to create the virtual address space even though IOS doesn't employ a full virtual memory
scheme. To reduce overhead, the kernel does not perform any memory paging or swapping, so virtual
address space is limited to the bounds of the physical memory available.

IOS divides this address space into areas of memory called regions,which mostly correspond to the various
types of physical memory. For example, SRAM might be present for storing packets and DRAM might be
present for storing software and data on a given type of router. Classifying memory into regions allows IOS
to group various types of memory so software needn't know about the specifics of memory on every
platform.

Memory regions are classified into one of eight categories, which are listed in Table 1-1.

Memory regions also can be nested in a parent-child relationship. Although there is no imposed limit on the
depth of nesting, only one level is really used. Regions nested in this manner form subregions of the parent
region. Figure 1-2 shows a typical platform virtual memory layout and the regions and subregions IOS
might create.

Figure 1-2. Memory Regions

< BACK Make Note | Bookmark CONTINUE >

Table 1-1. Memory Region Classes
Memory
Region
Class Characteristics
Local Normal run-time data structures and local heaps; often DRAM.
Iomem Shared memory that is visible to both the CPU and the network media controllers over a data

bus. Often is SRAM.
Fast Fast memory, such as SRAM, used for special-purpose and speed-critical tasks.
IText Executable IOS code.
IData Initialized variables.
IBss Uninitialized variables.
PCI PCI bus memory; visible to all devices on the PCI buses.
Flash Flash memory. This region class can be used to store run-from-Flash or run-from-RAM IOS

images. It often also can be used to store backups of the router configuration and other data,
such as crash data. Typically, a file system is built in the Flash memory region.

Page 1 of 6

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=15

The IOS EXEC command show region can be used to display the regions defined on a particular system
as demonstrated in Example 1-1 (taken from a Cisco 7206 router).

Example 1-1. show region Command Output

router#show region Region Manager: Start End Size(b) Class Media Name 0x01A00000 0x01FFFFFF
6291456 Iomem R/W iomem 0x31A00000 0x31FFFFFF 6291456 Iomem R/W iomem:(iomem_cwt)
0x4B000000 0x4B0FFFFF 1048576 PCI R/W pcimem 0x60000000 0x619FFFFF 27262976 Local R/W main
0x600088F8 0x61073609 17214738 IText R/O main:text 0x61074000 0x611000FF 573696 idata R/W
main:data 0x61100100 0x6128153F 1578048 IBss R/W main:bss 0x61281540 0x619FFFFF 7858880 Local
R/W main:heap 0x7B000000 0x7B0FFFFF 1048576 PCI R/W pcimem:(pcimem_cwt) 0x80000000
0x819FFFFF 27262976 Local R/W main:(main_k0) 0xA0000000 0xA19FFFFF 27262976 Local R/W main:
(main_k1)

On the left, the Start and End addresses correspond to parts of the platform virtual memory map. On the
right are the regions and subregions. Subregions are denoted by a name with the : separator and no
parentheses.

Figure 1-3 illustrates this memory map and its regions.

Figure 1-3. Memory Map and Regions

Page 2 of 6

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=15

The gaps between the address ranges—for example, pcimem ends at 0x4B0FFFFF and main begins at
0x60000000—are intentional. These gaps allow for expansion of the regions and provide a measure of
protection against errant threads. If a runaway thread is advancing through memory writing garbage, it is
forced to stop when it hits a gap.

From the output in Example 1-1 and Figure 1-3, you see that the entire DRAM area from 0x60000000 to
0x619FFFFF has been classified as a local region and further divided into subregions. These subregions
correspond to the various parts of the IOS image itself (text, BSS, and data) and the heap. The heap fills all
the local memory area left over after the image is loaded.

Some regions appear to be duplicates, only with a different address range, such as iomem:(iomem cwt):

 Start End Size(b) Class Media Name
0x01A00000 0x01FFFFFF 6291456 Iomem R/W iomem
0x31A00000 0x31FFFFFF 6291456 Iomem R/W iomem:(iomem_cwt)
....

These duplicate regions are called aliases. Some Cisco platforms have multiple physical address ranges
that point to the same block of physical memory. These different ranges are used to provide alternate data
access methods or automatic data translation in hardware. For example, one address range might provide
cached access to an area of physical memory while another might provide uncached access to the same
memory.

The duplicate ranges are mapped as alternate views during system initialization and IOS creates alias
regions for them. Aliased regions don't count toward the memory total on a platform (because they aren't
really separate memory), so they allow IOS to provide a separate region for alternate memory views without
artificially inflating the total memory calculation.

Page 3 of 6

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=15

Memory Pools

IOS manages available free memory via a series of memory pools, which are essentially heaps in the
generic sense; each pool is a collection of memory blocks that can be allocated and deallocated as needed.
Memory pools are built out of regions and are managed by the kernel. Often, the pools correspond one-to-
one to particular regions, but they are not required to. A memory pool can be built from memory spanning
several regions, allowing memory to be allocated and reclaimed from various areas for maximum efficiency.

You can obtain information on IOS memory pools by using the show memory command as demonstrated
by Example 1-2.

Example 1-2. IOS Memory Pool Information in show memory Command Output

router#show memory Head Total(b) Used(b) Free(b) Lowest(b) Largest(b) Processor 61281540 7858880
3314128 4544752 4377808 4485428 I/O 1A00000 6291456 1326936 4964520 4951276 4964476 PCI
4B000000 1048576 407320 641256 641256 641212 ...

NOTE

The output from show memory can be very long. It should not be issued while console output
paging is disabled (the terminal length set to 0) because there is no way to stop or pause the
output until it completes.

In Example 1-2, there are three memory pools: Processor, I/O, and PCI. Comparing the Head column in
this output with the Start column from the output of show region in Example 1-3 allows you to see which
regions are contained within each memory pool.

Example 1-3. show region Command Output

router#show region Region Manager: Start End Size(b) Class Media Name 0x01A00000 0x01FFFFFF
6291456 Iomem R/W iomem 0x31A00000 0x31FFFFFF 6291456 Iomem R/W iomem:(iomem_cwt)
0x4B000000 0x4B0FFFFF 1048576 PCI R/W pcimem 0x60000000 0x619FFFFF 27262976 Local R/W main
0x600088F8 0x61073609 17214738 IText R/O main:text 0x61074000 0x611000FF 573696 idata R/W
main:data 0x61100100 0x6128153F 1578048 IBss R/W main:bss 0x61281540 0x619FFFFF 7858880 Local
R/W main:heap ….

From Example 1-3, you can see the Processor memory pool contains memory from the subregion of
main, called heap, which is in class Local. The Processor memory pool is common to all IOS systems and
always resides in local memory. This is the general memory pool from which data is allocated (such as
routing tables).

The I/O pool is managing memory from the iomem region and the PCI pool is managing memory from the
pcimem region.

The remaining fields in the show memory output in Example 1-2 provide useful statistics about the pools
as documented in the following list. All units are in bytes.

Total—

Total size of the pool.

Used—

Current amount of memory allocated.

Free—

Page 4 of 6

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=15

Current amount of memory available.

Lowest—

The least amount of memory ever available since the pool was created.

Largest—

The size of the largest contiguous block of memory currently available.

The show memory command can also display the blocks within each memory pool, as you'll see later in
this chapter.

Last updated on 12/5/2001
Inside Cisco IOS Software Architecture, © 2002 Cisco Press

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

address space
 virutal address space
addresses
 memory regions
 aliases 2nd
aliases
 memory regions 2nd
architecture (IOS)
 memory
 memory pools 2nd
 regions 2nd 3rd 4th
Cisco IOS
 memory
 memory pools 2nd
 regions 2nd 3rd 4th
commands
 show memory 2nd 3rd
 show region
duplicate memory regions (aliases)
End addresses
 memory regions
EXEC configuration commands
 show region
Fast memory region
Flash memory region
heaps (memory)
 memory pools 2nd
I/O memory pool 2nd
IData memory region
IEss memory region
Iomem memory region
IOS

Page 5 of 6

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=15

 memory
 memory pools 2nd
 regions 2nd 3rd 4th
IText memory region
Local memory region 2nd
maps, memory
 regions 2nd
memory
 IOS management
 memory pools 2nd
 regions 2nd 3rd 4th
 aliases 2nd
memory map
 regions 2nd
memory paging
MMU
 virutal address space
nesting
 memory regions
output
 show memory command 2nd
paging memory
parent-child relationships
 memory regions
PCI memory pool 2nd
PCI memory region
pools, memory 2nd
Processor memory pool 2nd
regions, memory 2nd 3rd 4th
 aliases 2nd
show memory command 2nd
show region command
Start addresses
 memory regions
subregions
subregions, memory 2nd 3rd
swapping memory
virtual address space

About Us | Advertise On InformIT | Contact Us | Legal Notice | Privacy Policy
© 2001 Pearson Education, Inc. InformIT Division. All rights reserved. 201 West 103rd Street, Indianapolis, IN 46290

Page 6 of 6

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=15

